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Abstract

An adversarial attack to a text classifier consists
of an input that induces the classifier into an in-
correct class prediction, while retaining all the
linguistic properties of correctly-classified ex-
amples. A popular class of adversarial attacks
exploits the gradients of the victim classifier to
train a dedicated generative model to produce
effective adversarial examples. However, this
training signal alone is not sufficient to ensure
other desirable properties, such as similarity
to non-adversarial examples, linguistic fluency,
grammaticality, and so forth. For this reason,
in this paper we propose a novel training ob-
jective which leverages a set of pretrained lan-
guage models to promote such properties in the
adversarial generation. A core component of
our approach is a set of vocabulary-mapping
matrices which allow connecting the genera-
tive model to any victim or component model
of choice, while retaining differentiability end-
to-end. The proposed approach has been tested
in an ample set of experiments including six
text classification datasets, two victim models,
and four baselines. The results show that it
has been able to produce effective adversarial
attacks, outperforming the compared genera-
tive approaches and proving highly competi-
tive against established token-replacement ap-
proaches.

1 Introduction

Text adversarial attacks are subtly manipulated in-
puts to a machine learning model that have the in-
tent of causing erroneous predictions. These manip-
ulations can drastically alter a model’s behaviour
and represent a significant challenge for the entire
field of machine learning. In the context of text
classification, adversaries employ a wide range of
techniques, from simple token alterations to full
training of generative models, each aiming to ex-
ploit the model’s weaknesses while also preserving
the textual content’s semantic coherence and gram-
maticality.

The most prevalent adversarial attack strategy is
the token-based approach, where adversarial exam-
ples are crafted through a sequence of token modi-
fications — replacements, additions, or deletions
— guided by search methods like beam search, all
while maintaining a series of constraints (Morris
et al., 2020). These attacks are simple and effec-
tive, but the search method must be run for each
example, and the process can prove very time con-
suming (Yoo et al., 2020). Conversely, generative
approaches train a text-to-text model to directly
produce transformations from original to adversar-
ial examples. These attacks, though less studied,
can explore a more expansive range of transfor-
mations than token-based attacks, and at inference
time can rapidly generate a diverse and intriguing
array of adversarial examples. The approach is flex-
ible, with a range of text-to-text models able to be
used for this purpose; examples include Generative
Adversarial Networks (GANSs) (Zhao et al., 2018),
paraphrasers (Iyyer et al., 2018), autoencoders (Xu
et al., 2021), or style transfer models (Qi et al.,
2021). The main drawback of the generative ap-
proach is that the model must be trained to generate
effective attacks, which can be challenging due to
the difficulty of manual supervision and the lack of
straightforward training approaches (Wong, 2017).

Adversarial attacks also differ in the amount of
assumed access to the classification model (often
called the victim model). One common assump-
tion is the black-box scenario, where attacks only
require access to the victim model’s outputs, or
sometimes the logits (Biggio and Roli, 2018). The
opposite is the white-box scenario, where the ad-
versary assumes full information access, including
gradients, data, loss functions, and model parame-
ters — effectively, the worst-case scenario for an
attacked system (Biggio and Roli, 2018). These
assumptions may seem hard to meet in practice, but
increasingly they reflect realistic scenarios due to
the widespread adoption of publicly available ma-



chine learning models (such as those found on the
Hugging Face Model Hub'). On the other hand, de-
velopers can use white-box attacks to identify and
fix vulnerabilities in their model. In short, studying
white-box attacks remains critical.

An intuitive approach for training a white-box
generative attack is to link the generative model to
the victim model, so as to use the feedback from
the victim model as a training signal. However, this
signal is not sufficient to ensure all the other prop-
erties required of a satisfactory adversarial attack,
such as fluency, grammaticality, closeness to non-
adversarial examples, and so forth. For this reason,
in this paper we propose leveraging a suitable suite
of pretrained language models to encourage such
properties at training time. During the forward pass,
our generative model receives an original example
in input and generates a “soft token” prediction of
adversarial example in output, which is then passed
to the victim and downstream models for their pro-
cessing. Softening the prediction ensures that the
entire pipeline remains end-to-end differentiable,
and able to leverage the training objectives of the
downstream modules as an effective adversarial
attack loss function.” The parameters of the gener-
ative model are then updated in the backward pass,
while the parameters of the other models are all
kept frozen. After training, the generative model
is able to generate not only one, but multiple ad-
versarial candidates per original example, simply
by using conventional beam search or any other
decoding method.

An immediate challenge to this approach is that
the use of soft predictions to permit overall differ-
entiability requires the alignment of the models’
vocabularies, which is not easy to ensure. The sim-
plest workaround is to constrain all the models to
share the same vocabulary and tokenisation algo-
rithm. However, this severely limits the choice of
pretrained models. Another possible approach is
to restrict the vocabularies of all models to their to-
kens in common (Song et al., 2021). However, this
may majorly limit the expressiveness and articula-
tion of the learned adversarial strategies. Overall,
the vocabulary alignment between language mod-
els still seems to be a partially unresolved issue in
the literature.

"https://huggingface.co/models

The generative model cannot directly pass text to the other
models while keeping the training signal differentiable, as it
needs either sampling from the token distribution or taking an
argmazx — both of which are non-differentiable operators.

For this reason, in this paper, we propose an
original approach for training a cross-vocabulary,
differentiable white-box generative attack that is
able to circumvent this restriction. The core com-
ponents of the proposed approach — nicknamed
XVD, from ‘cross-vocabulary differentiable’ — in-
clude: 1) the use of a suitable set of pretrained
language models to provide training signals to the
adversarial attack generator; 2) the adoption of soft
predictions to ensure end-to-end differentiability,
and 3) a set of sparse vocabulary-mapping matri-
ces that map tokens between the vocabulary of
the generative model and those of the victim and
downstream models, allowing complete freedom
in the choice of models. The generative model
is then trained using a highly configurable, over-
all loss function that balances text quality with
attack strength. In the experiments, the proposed
approach has been compared against four baseline
methods on six text classification datasets and two
victim models. The results show the effectiveness
of the proposed approach at consistently generat-
ing high-quality adversarial examples across the
range of datasets and victim models. In addition, a
comprehensive ablation analysis highlights the con-
tributions of the various components and suggests
ways for future improvements.

In summary, our paper makes the following con-
tributions:

1. anovel approach for training generative white-
box attacks, based on training signals from a
set of pretrained language models and a fully
differentiable loss function;

2. a vocabulary-mapping module which grants
interoperability to any chosen combination of
generative, victim or loss component models;

3. extensive experiments over six text classifica-
tion datasets and two victim models that give
evidence to the effectiveness of the proposed
approach;

4. a comprehensive ablation and sensitivity anal-
ysis that delves into its benefits and limita-
tions.

2 Related Work

White-box token-based attacks date back to at least
the work of Papernot et al. (2016). Typically, these
attacks leverage the gradient signal of the victim
model in two main ways. The first is to rank token
importance in the original sentence, thus identify-
ing promising attack targets, as demonstrated in



Wallace et al. (2019). The second is to aid in select-
ing token transformations that best meet adversar-
ial criteria, as shown in various character-level and
word-level attacks (Ebrahimi et al., 2018; Zhang
et al., 2019; Liang et al., 2018).

The differentiable model-cascading approach de-
scribed in Section 1 has been explored by several
other studies. For instance, Xu et al. (2021) have
used an autoencoder as the generative model and
examined several modifications to its training pro-
cess, such as label smoothing and copy mecha-
nisms, to enhance the quality of the generated ex-
amples. Wang et al. (2020) have proposed incorpo-
rating a downstream model which allows the gener-
ative model to control the topic of its generated ad-
versarial candidates at inference time. In contrast,
Song et al. (2021)’s approach is based on train-
ing the generator to generate trigger phrases that,
when concatenated to an input sentence, induce
misclassification in the victim model. In turn, Guo
et al. (2021) have proposed learning an example-
dependent matrix of token probabilities, which at
inference time is sampled to generate adversarial
examples. However, none of these approaches has
proposed a systematic and configurable solution
for training the generative model to satisfy all the
desirable properties of an adversarial attack.

In terms of the vocabulary-alignment issue, the
works of Xu et al. (2021), Wang et al. (2020) and
Guo et al. (2021) have all acknowledged the prob-
lem, but only implemented the shared-vocabulary
scenario. Conversely, Song et al. (2021) have con-
strained the generative model to only output the
common tokens of all vocabularies. As observed
in the Introduction, neither of these solutions can
be regarded as satisfactory.

3 Proposed Approach

3.1 Overview

We aim to fine-tune a generative model g, with pa-
rameters ¢ and vocabulary V,, to generate adversar-
ial examples for victim model v, with vocabulary
V.. The approach includes two additional compo-
nent models for the training objective: a semantic
similarity model, s, of vocabulary Vs, and a natural
language inference (NLI) model, n, of vocabulary
V.. The parameters of models v, s and n are all
fixed, while those of g are the target of the proposed
training approach. The complete setup is shown in
Figure 1.
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Figure 1: The training approach. The loss function is
composed of scores from a number of cascaded models
(depicted by squares), a KL divergence score using a
reference model, and a diversity score. The parame-
ters of the generative model are updated using standard
backpropagation.

3.2 Training

We initialise the generative model, g, with a pre-
trained paraphrase model as it is already capable of
a range of diverse, semantic-preserving transforms.
Given an original example x, we employ g to gener-
ate an example 2’ of length 7" and its corresponding
sequence of token probability distributions, which
forms a matrix P with dimensions 7" x |V].

We then use the token probability distribution
matrix, a vocabulary-mapping matrix, and the to-
ken embedding matrix of the downstream model
to create a weighted average of token embeddings,
allowing us to retain the desirable differentiabil-
ity. Formally, for any component model V;, with
i € {v, s,n}, the respective weighted embeddings
W, are computed as:

W; = PM;E;

where E; is the token embedding matrix of model 7,
and M; is a vocabulary-mapping matrix (described
in Section 3.3) that maps V, the vocabulary of P,
to Vj;, the vocabulary of model .

Additionally, to control the diversity of the gen-
erated embeddings, we use the Gumbel-softmax
reparametrisation trick (Jang et al., 2017), replac-
ing P with a sampled matrix P, that incorporates
Gumbel(7) noise, where 7 is a chosen temperature
parameter. Values of 7 > 1 make the samples more
evenly distributed, while values < 1 concentrate
them towards a one-hot distribution. Prior research



has also used this technique to increase exploration
during training (Xu et al., 2021; Wang et al., 2020).

After computation, the weighted embeddings
Wi,i € {v,s,n} are fed into the component mod-
els, and their output scores are used in the loss
function (Section 3.4). The generative model’s pa-
rameters are updated via standard backpropagation.

3.3 Vocabulary-mapping matrices

We construct a vocabulary-mapping matrix, M;, to
map tokens from the generative model’s vocabulary,
Vy, to the vocabulary of each component model,
noted as V; hereafter. The matrix has shape |V, | x
|V;|, and each row is a probability distribution that
represents the one-to-many token mapping, with
values summing to 1. This is a large matrix, and
to save space we have implemented it as a sparse
matrix.

Mapping tokens between vocabularies, each pos-
sibly built with a different tokenisation algorithm,
is not straightforward. In our implementation, the
generative model’s tokeniser uses SentencePiece
(Kudo and Richardson, 2018), while the tokenisers
of all the component models use WordPiece (Wu
et al., 2016). We match tokens where possible us-
ing string matching rules, and use the component
model tokeniser to create mappings for the remain-
der. The process is described fully in Appendix
B.

3.4 Loss function

In accordance with the definition provided by
Michel et al. (2019), our aim is to create adversar-
ial examples that successfully tweak the predicted
labels, yet ensure retention of the original text’s
meaning alongside linguistic acceptability. To this
end, our training objective, {(z, z’):

integrates multiple components as follows:

* v(x, ') represents the ‘victim model score’,
a measure of how much the classifier’s confi-
dence in the correct class drops when replac-
ing z to 2’ in input.

 s(x,a’) is the ‘similarity score’ between x
and x/, which is based on the cosine similarity

of their sentence embeddings as computed by
a pretrained Sentence-BERT model (Reimers
and Gurevych, 2019)

* e(x,2’) is the ‘entailment score’, which mea-
sures the probability that x’s ground-truth la-
bel is retained by z’, and is approximated with
the probability of z entailing «’ using a pre-
trained NLI model.

* Dgr is the Kullback-Leibler (KL) divergence
between the token probabilities output by the
fine-tuned generative model, noted as g, and
those of a reference model, noted as ¢g*, and
taken as the initial pretrained model. D, is
defined as:

1
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where the generated sequence length, T, is
used to normalise the divergence to prevent
longer sequences being unfairly penalised.
This term encourages the fine-tuned distribu-
tion to not deviate excessively from the initial,

preserving the generative properties of g*.

* ¢ and t* are threshold clipping operators, with
t(a,B) = aif a < B, and 0 otherwise, and
t*(a,B) = a if a > B, and O otherwise. As
such, o and $ are hyperparameters that con-
trol each term’s contribution.

The training objective [(z,z") is incorporated
into the final batch-level loss, L, defined as:

1

B > lx,a) | +agdB) 3)

(z,2')€eB

where d(B) is a batch-level diversity score, and oy
its corresponding coefficient. To compute d(B),
we first compute the mean of the token embeddings
for each generated sentence within batch B. We
then calculate the cosine similarity between each
pair of mean embeddings using the same model
as the similarity score, and compute d(B) as the
average, with lower values indicating more diver-
sity. We found that the inclusion of this term can
effectively prevent mode collapse and encourage
variety in the generated examples.



Each term in the loss function is differentiable,
allowing for efficient minimisation via backpropa-
gation. The coefficients can be adjusted to priori-
tise different objectives, such as attack strength or
fluency.

3.5 Validation and early stopping

During fine-tuning, it is important to enforce early
stopping to prevent text quality degradation due
to over-training. To this end, during validation
we generate eight candidates per original, using
diverse beam search (Vijayakumar et al., 2016).
For each candidate, we check if its scores from
Equation 1 surpass the corresponding /3 thresholds
(or, in the case of the KL divergence, fall below).
The validation metric we adopt is the proportion of
attacks that have at least one candidate that success-
fully passes all checks. We calculate the validation
metric multiple times per epoch, and halt the train-
ing process once it fails to improve over a patience
interval, as standard for early stopping.

4 Experimental setup

4.1 Datasets

We have conducted experiments over six diverse
English text classification datasets (Table 1). The
Hate Speech dataset (HS) classifies offensive lan-
guage in tweets as hate speech, offensive language,
or neither (Davidson et al., 2017); the Text RE-
trieval Conference (TREC) question-type classifi-
cation dataset (Li and Roth, 2002) and the SUBJ
dataset (Pang and Lee, 2004) discriminate between
objective and subjective sentences; the Rotten
Tomatoes (RT) (Pang and Lee, 2005) and Finan-
cial PhraseBank (FP) (Malo et al., 2014) datasets
are sentiment analysis datasets of movie reviews
and financial news, respectively; and the Emotion
dataset classifies text fragments as one of six ba-
sic emotions (Saravia et al., 2018). These datasets
have been chosen for their variety and attackable
short snippets, with concise statistics and examples
presented in Table 1. Further details are provided
in Appendix A.

4.2 Models

We have used T5-Base (Raffel et al., 2020), which
uses SentencePiece for tokenisation, as our gener-
ative model, g. We have evaluated attacks on two
victim models: a DistilBERT model (Sanh et al.,
2019) and an ELECTRA-trained model (Clark
et al., 2020), both of which use WordPiece for

tokenisation. Each victim model has been fine-
tuned on the given dataset prior to being subjected
to attacks. Full details of all models (including
the semantic similarity and entailment models) are
provided in Appendix A.

4.3 Baselines

To comparatively evaluate the performance of our
model we have used four established baseline at-
tacks, all included in the comprehensive OpenAt-
tack adversarial attack library of Zeng et al. (2021).
TextFooler (Jin et al., 2019) and BERTAttack (Li
et al., 2020) form the first set of baselines; both are
token-replacement attacks that replace individual
tokens sequentially in a constrained optimisation
process. We have also included two generative at-
tacks that, like our approach, generate adversarial
candidates at inference time. The first is a GAN
approach (Zhao et al., 2018), and the second is
an adversarial paraphraser, named SCPN (Iyyer
et al., 2018), that generates syntactically controlled
paraphrases.

4.4 Candidate selection

At inference time, our fine-tuned model is capable
of generating, in principle, an unlimited number
of candidates per input example. Nevertheless, for
the purpose of fair comparison with the baselines
outlined in 4.3 that return a single adversarial ex-
ample per input, we have opted to select only one
candidate also from our model.

We begin with the use of diverse beam search
(Vijayakumar et al., 2018) to create n candidates
for each original example. (A sensitivity analy-
sis of n is presented in Section 6.1.) We then
compute a ‘quality score’ for each candidate as
s(z,2') + e(x,2") — Dgr(x, "), which repre-
sents a rough balance of our text-quality objectives.
From these scored candidates, we select those that
have managed to flip the ground-truth label. Within
this subset, we select the candidate with the high-
est score amongst those that satisfy all validation
checks (Section 3.5). If none meets these require-
ments, the highest-scoring candidate is chosen in-
stead.

4.5 Evaluation metrics

As an obvious preamble, no ground-truth reference
exists for adversarial candidates, and therefore the
evaluation has to be orchestrated with adequate un-
supervised metrics. To this aim, we have used five
evaluation metrics over the test set of each dataset,



Dataset | N (trn/val/tst) | Classification task #icls | Examples

HS 8k/1k/1k hate speech detection 3 "I can be very vengeful. Don’t be a [..]" (offensive language)
TREC 4k/1k/0.5k type of question 6 "When did beethoven die?"(num)

SUBIJ 2k/0.5k/0.5k (subject/object)ivity 2 "...routine, harmless diversion and little else." (subj)

RT 3.5k/0.5k/0.5k | sentiment (movies) 2 "A moving and not infrequently breathtaking film." (pos)
FP 1.5k/0.2k/0.2k | sentiment (financial) 3 "Operating profit was EUR 11.4 mn, up from [...]" (pos)
Emotion 10k/1k/1k emotion detection 6 "1 be made to feel rotten"(sad)

Table 1: Statistics and examples from the datasets used. Column N shows the approximate number of examples in
each train/validation/test split, and #cls is the number of classes of the dataset.

and reported the median values in Table 2. The
first metric, referred to as Flip, is the proportion
of instances where the ground-truth label of the
original example, predicted correctly by the victim
model, has flipped in the prediction for the can-
didate. The next three—Sim, Flu, and Ent— are
text quality metrics, and are only computed for ex-
amples that have flipped. To assess the semantic
similarity between the original and the candidate
(Sim), we have used BERTScore F1 (Zhang et al.,
2020); to assess the fluency of the candidate (Flu),
we have used BARTScore (Yuan et al., 2021), a
fluency proxy that uses the text generation proba-
bility of a seq2seq model; and for the entailment
(Ent), we have used the probability that the can-
didate does not contradict the original in the en-
tailment model. The last metric — the Validated
Success Rate (VSR) — is the proportion of exam-
ples that have successfully flipped the label and
also met minimum thresholds across the three text
quality metrics.> While all automated metrics have
inherent limitations, our choice of metrics is both
consistent with prior literature and able to provide
a thorough assessment of the quality of the adver-
sarial candidate.

Postprocessing. Before metric calculation, each
successful attack has been post-processed to begin
with a capital letter, end with a period, and have no
whitespace around the last punctuation character.

5 Results

The results from our experiments are reported in
Table 2, showing that the proposed approach, XVD,
has been able to generate high-quality adversarial
examples with notable success rates (VSR). Com-
pared to the generative baseline methods, GAN
and SCPN, XVD’s performance has proved better
for all experimental combinations bar one. XVD
has also performed competitively against the best
token-replacement baseline, BERTAttack, scoring

3We have used the (fairly relaxed) thresholds of: > 0.85
Sim, > —4 Flu, > 0.6 Ent.

best for three out of six datasets with the Distil-
BERT victim model, and for four out of six with the
ELECTRA victim model. XVD has also achieved
the highest VSR overall (0.87; Emotion dataset).
In particular, it has performed the best with both
victim models over the TREC dataset, where its
flipping rate has proved much higher than that of
the other approaches, and over the HS dataset, prob-
ably because the token-replacement baselines have
struggled to replace its many slang words in the ab-
sence of well-defined synonyms. Qualitative exam-
ples of the attacks generated by XVD are presented
in Table 3.

Overall, the proposed approach has proved very
strong at label-flipping (Flip) and at retaining the
original label (Ent), while intermediate in the flu-
ency (Flu) and similarity (Sim) metrics. This is
mainly due to its much broader generative space
compared, in particular, to the token-replacement
attacks. The proposed approach is also, by design,
able to pursue different trade-offs between these
properties, thanks to its highly configurable train-
ing objective and generative behaviour. We explore
some of these trade-offs in the following section.

6 Ablations

We have measured the performance impact of vari-
ous parameters within our model through a series
of ablation studies, using the Financial PhraseBank
dataset as reference and testing each configuration
using three random seeds. The results are presented
in the following subsections.

6.1 Number of generated evaluation
sequences

The number of sequences generated during infer-
ence, n, directly controls the attack’s search space.
As n increases, we expect arise in the label-flipping
rate and, after a point, a decline in text quality met-
rics. To measure these effects, we have varied n,
employing diverse beam search for n > 2 (with
n/2 beam groups) and regular beam search for



Victim Model Attack

Datasets

\ HS TREC SUBJ
| VSR | Flip Sim Flu Ent | VSR |Flip Sim Flu Ent | VSR | Flip Sim Flu Ent
BertAttack | 0.37 [ 0.50 096 -1.84 095 033 | 062 095 -235 067 | 046 | 0.71 095 -1.96 0.90
ELECTRA  TextFooler | 029 1053 092 -2.94 080 | 0.18 | 044 093 -274 049 | 0.24 | 055 094 -291 0.69
GAN 000 | 0.78 0.79 -6.38 0.33 | 0.00 | 0.70 084 -638 0.09 | 0.00 | 0.35 081 -6.08 0.24
SCPN 012 | 071 0.84 -449 049 | 025|087 090 -3.87 048|028 | 0.63 089 -328 0.68
XVD (mean) | 0.46 | 0.80 0.89 -3.30 0.88 | 0.58 [ 0.99 092 -322 080 0.63 | 0.92 0.89 -325 0.90
XVD (std) | 0.02 | 0.04 0.00 028 0.02| 002|004 000 028 0.02| 003|002 000 012 0.0]
BertAttack | 0.38 | 0.53 096 -1.87 094 | 032 | 0.64 094 -256 069 | 0.40 | 0.65 095 -1.89 0.83
DistlBERT  [eXtFooler | 030 1 0.54 093 291 079 | 0.19 | 044 093 -276 052|024 | 051 094 -258 0.64
GAN 000 | 0.81 079 -641 033|000 | 073 084 -638 0.10| 000 | 043 081 -6.11 0.20
SCPN 013 | 072 0.84 -446 051|027 | 092 090 -384 055|023 |050 089 -332 0.70
XVD (mean) | 0.59 | 0.82 0.89 -3.14 0.89 | 037 | 1.00 0.89 -3.70 0.65| 0.14 | 0.98 082 -4.04 0.79
XVD (std) | 0.08 | 0.01 0.01 0.6 003|008 |000 001 016 002|012 |001 00 026 0.06

Datasets

Victim Model Attack ‘ RT FP Emotion
| VSR | Flip Sim Flu Ent | VSR | Flip Sim Flu Ent | VSR | Flip Sim Flu Ent
BertAttack | 0.47 | 0.85 096 -1.42 0.79 | 032 | 0.68 0.96 -1.81 0.56 | 0.66 | 0.90 098 -0.99 0.97
ELECTRA  TextFooler | 034 10.69 096 -212 069 | 033 | 063 094 261 071|053 076 097 -127 095
GAN 0.00 | 0.39 082 -600 033|000 |039 079 -624 0.16 | 0.00 | 0.68 0.82 -6.43 0.11
SCPN 028 | 0.66 0.89 -3.44 070 | 0.14 | 040 089 -352 058 | 037 | 0.72 090 -3.26 0.83
XVD (mean) | 030 | 0.81 085 -332 0.84 | 072|100 089 -3.12 094|064 | 097 090 -324 0.88
XVD (std) | 0.05 | 0.05 001 015 002 015|000 00/ 037 003|014 |002 002 044 005
BertAttack | 0.46 | 0.89 096 -1.40 071|043 | 079 096 -1.77 082 | 0.67 | 088 098 -097 098
DistilBERT  TeXtFooler | 036 1070 096 -2.10 075 | 041 | 076 094 -260 077 | 0.54 | 076 098 -128 095
GAN 000 | 041 082 -595 032000 | 041 080 -624 0.18 | 0.00 | 0.84 082 -642 0.11
SCPN 027 | 0.69 0.89 -348 0.63 | 0.19 | 049 090 -330 0.3 | 041 | 0.80 090 -3.23 0.80
XVD (mean) | 028 | 089 085 -352 0.77 | 025|097 086 -395 072 0.87 [ 097 092 -2.64 095
XVD (std) | 010 | 0.02 0.02 023 0.03| 015|004 00/ 021 021 000|000 000 002 0.0

Table 2: Evaluation of baselines and our approach, XVD, across six datasets and two victim models. For XVD,
we report the mean and std of each metric across three random seeds (the other approaches are deterministic). We
use the following abbreviations: VSR is Validated Success Rate, Flip is the proportion of label flips, Sim is the
similarity as measured by BERTScore F1, Flu is fluency as measured by BARTScore, and Ent is the entailment
probability measured by an NLI model. Higher is better for all metrics. For dataset abbreviations, see Section 4.1.

n = 1. Our findings, depicted as a plot in Figure
2, have confirmed the expected increase in label-
flipping rate with larger n. The fluency and sim-
ilarity metrics have peaked around n = 4 before
declining, while entailment has remained relatively
constant from n = 8 onwards. The validated suc-
cess rate, which compounds the label-flipping rate
and the text quality metrics, has improved as n
increased, up to a plateau at n = 32.

6.2 KL divergence and diversity coefficients

The KL divergence and diversity coefficients (re-
spectively, a i, in Equation 1 and o4 in Equation
3) define the intensity of their respective regularis-
ers and substantially impact the quality and diver-
sity of the generated text, as shown in Figure 3.
Increasing the KL coefficient ties the trained model

more strongly to the reference model, which in our
implementation increases the attack quality at the
expense of the label- flipping rate. On the other
hand, lower values of the diversity coefficient push
the model towards samples that are less diverse,
while higher values promote diversity per se. Em-
pirically, we have found that that the label-flipping
rate has tended to remain constant for a range of
diversity values, but the overall text quality metrics
have peaked for a value of 10.

6.3 Impact of the vocabulary mapping

To probe the impact on performance of the vocabu-
lary mapping, we have also carried out an experi-
ment attacking a T5 victim model, which has the
same vocabulary as the generative model and dis-
penses with the need for a vocabulary-mapping ma-



Dataset Label
HS Orig Get two birds stoned at one time. Neither
Adv At the same time get two birds stoned. Offensive
. - - - o -
TREC Orig What is the atomic weight of silver? Numeric
Adv Tell me the atomic weight of silver? Description
SUBJ Orig “ funny valentine “ is about learning what it takes to find true love . Objective
Adv funny valentine’s about finding true love. Subjective
RT Orig suffers from unlikable characters and a self-conscious sense of its own quirky hipness . Negative
Adv it is characterized by characters who are unlikable and it has a sense of hipness that is self-conscious. ” Positive
FP Orig In addition , the company will reduce a maximum of ten jobs. Negative
Adv It has announced it has a maximum of ten job-separation measures. It has announced it has Neutral
Emotion Orig i find myself feeling anxious and unsure Fear
Adv anxiety and a lack of confidence Joy
Table 3: Successful adversarial attack examples generated by the proposed approach.
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Figure 2: Performance as a function of the number of
sequences generated per sample (on the FP dataset). The
fluency and similarity metrics have been normalised to
the [0,1] interval. Higher is better for all metrics.

trix. The attacks on the T5 model (on the FP dataset,
averaged across three seeds) have resulted in a
higher VSR value (0.44) compared to ELECTRA
(0.39) and DistilBERT (0.28), implying that the
vocabulary-mapping matrix may introduce some
performance penalisation. However, this difference
could also be due to other reasons, such as the
homogeneity between the attacker and the victim
model. Since it is not obvious how to precisely
excise the impact of the vocabulary mapping from
that of the other components, we leave a more ex-
act quantification and possible mitigations to future
work .

7 Conclusion

This paper has presented an approach for creating
white-box adversarial attacks against any text clas-
sifier, regardless of the vocabulary of the generator,
victim or component models. The approach lever-

—— VSR —— Flip

1 —_—
0.8
06 \/_/—‘\

0.01 25 5 10 20
Diversity coefficient

Figure 3: Performance as a function of the KL diver-
gence and diversity coefficients.

ages vocabulary-mapping matrices ro remap the vo-
cabularies across components, allowing for a fully-
differentiable training objective without sacrificing
the expressiveness of the generator. Experimental
results across six datasets and two victim models
have confirmed the viability and effectiveness of
the proposed approach, and an ablation analysis
has shown the impact of the key parameters on
the label-flipping/text quality trade-off. Future re-
search might aim to integrate other components, in-
cluding possibly human preferences, in the training
objective, enhance the performance contribution
of the vocabulary-mapping matrices, and adapt the
approach to tackle other NLP tasks.



8 Ethical considerations

The proposed approach potentially raises two main
ethical considerations. The first, is the potential to
generate offensive or inappropriate content. How-
ever, this risk, largely influenced by the training
data and the pretraining of the generative model
used, is a common challenge across text generation
models and not specifically our work. The second
is that the proposed approach might be used by a
malicious actor to deceive or manipulate real-world
systems. This risk follows from the dual-use nature
of adversarial research, where developing meth-
ods to defend systems against attacks first requires
exploring the attacks themselves.
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A Training details

The hyperparameters used for our experiments are
listed in Table 4. As optimiser, we have used
Adafactor* with learning rate set to 0.0004. To
select the values for the v parameters, we have
performed a grid search using the validation set of
the FP dataset, selecting the combination that max-
imised the validation criteria. The S coefficients
have been set in a similar way, but with a much
smaller search. For the 7 parameter of the Gumbel-
softmax sampling, we have investigated a range of
values (0.25, 0.5, 0.75, 1, 1.25, 1.5), but found no
clear performance differences between them, so we
have simply set 7 = 1.25 for all experiments as it
seemed a sensible default. A sensitivity analysis
to some of these parameters has been presented
in the ablations (Section 6). The model has been
trained on a single NVIDIA A40 GPU with 48 GB
RAM. We have used the attack success rate over
the validation set as the validation criterion, and
either early stopped based on a patience parameter,
or stopped after a maximum of 12h of training time.
We have collated the training batches by bucketing
examples with similar length, and then randomis-
ing the batches. The details of the various models
used — generative and reference model, victim
models, and loss component models — are given
in Table 5.

Basic statistics from each dataset used are pre-
sented in Table 1. For each dataset we have used
pre-defined train/val/test splits if available, and oth-
erwise constructed them by randomly selecting
10% of the data as the validation set and 10% as the
test set (done for TREC, FP, SUBJ, and HS). For
the FP dataset, we have used the dataset version
with at least 50% annotator label agreement. For
all datasets, we have excluded the training exam-
ples that the victim model classified incorrectly, as
they could be said to be already “adversarial”. We
have also only included examples with 32 tokens or
fewer, since the pretrained paraphrase model was
trained for sequences in that range.

B Token mapping rules

In our implementation, the vocabulary of the
generative paraphrase model (of size 32,100) is
constructed using the SentencePiece (Kudo and
Richardson, 2018) tokenisation algorithm, while
the component models’ vocabulary (of size 30,522)

*We set the following arguments: scale_parameter=False,
relative_step=False, warmup_init=False)

Hyperparameter Value
General

Optimisation algorithm Adafactor
Learning rate 4x107°
Weight decay 0

Batch size (train) 12

Max original length 32

Min generated length max(0,l — 2 — floor({/4))

Max generated length l+2
Validation frequency Every 24 batches
Patience 35
Precision fp32
Coefficients (Equation 3)

Victim (o) 20
Similarity (o) 3.5
Entailment (a) 0.5
KL (akr) 0.1
Diversity (aq) 10
Victim threshold (/3.) 1-1/c
Similarity threshold (53,) 0.3
Entailment threshold (/3.) 0.4
KL threshold (53,) 4.5
Gumbel-softmax temperature 7 1.25
# Gumbel samples 5
Test-set generation

Batch size (eval) 8

# generated sequences (n) 32

# beams 32

# beam groups 16
Diversity penalty 1
Top-p 0.98
Temperature 1

Table 4: Hyperparameters. [ is the batch length of
generated text during evaluation (after padding) and
c is the number of classes in the dataset

use the WordPiece (Wu et al., 2016) tokenisation
algorithm. These algorithms have considerable dif-
ferences, and mapping the tokens is not straightfor-
ward, but we have been able to construct a workable
mapping with the following rules.

1. Map special tokens (e.g., PAD, EOS, UNK)
directly across both vocabularies. Map the
extra id tokens in the T5 vocabulary to the
UNK WordPiece token. Matches: 104

2. Map one-to-one direct matches between Sen-
tencePiece start-of-word tokens and Word-
Piece non-continuation tokens. Matches:
around 9000.

3. Map one-to-one direct matches between Sen-
tencePiece non start-of-word tokens and
WordPiece continuation tokens. Matches:
around 2000.

4. Map remaining SentencePiece tokens one-to-



Purpose Size (MB) Identifier

Training

Generative model 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)
Reference model 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)
Victim model (ELECTRA) 54 google/electra-small-discriminator

Victim model (DistilBERT) 268 distilbert-base-uncased

Similarity 134 sentence-transformers/paraphrase-MiniLM-L12-v2
Entailment 54 howey/electra-small-mnlis

Evaluation

Similarity (BERTScore) 1630 roberta-large

Fluency (BARTScore) 1630 facebook/bart-large-cnn

Entailment 54 howey/electra-small-mnli

Table 5: The models used in this paper. Our GPU memory requirements dictated we use only small, distilled models,
but it is highly likely larger models would give better performance. All models are from the Hugging Face Model
Hub.

many with WordPiece tokens using the Word-
Piece tokeniser, stripping any generated spe-
cial tokens, and assigning equal probabili-
ties to all matches. The few tokens with-
out matches (in practice, special cases like
\xad) are mapped to the UNK token. Matches:
around 22k.

C Limitations

A limitation of the proposed approach is its sub-
stantial requirement for computing and hardware
resources, as gradients need to be computed across
multiple models. A GPU with at least 24 GB of
memory is likely the minimum computing require-
ment, and for the utilization of larger models, cor-
respondingly more memory is necessary. This limi-
tation will lessen in the future as GPUs with larger
memory will become routinely available, and as
advancements in model distillation techniques con-
tinue. Another limitation is that the approach has
been solely tested with a paraphrase model as the
generator, and over datasets comprised of relatively
short sentences. The generalizability of the method
to other models and text styles remains then an
open question. However, the possibility of subdi-
viding larger blocks of text suggests that this may
not be a significant limitation in practice.
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