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Abstract

An adversarial attack to a text classifier consists001
of an input that induces the classifier into an in-002
correct class prediction, while retaining all the003
linguistic properties of correctly-classified ex-004
amples. A popular class of adversarial attacks005
exploits the gradients of the victim classifier to006
train a dedicated generative model to produce007
effective adversarial examples. However, this008
training signal alone is not sufficient to ensure009
other desirable properties, such as similarity010
to non-adversarial examples, linguistic fluency,011
grammaticality, and so forth. For this reason,012
in this paper we propose a novel training ob-013
jective which leverages a set of pretrained lan-014
guage models to promote such properties in the015
adversarial generation. A core component of016
our approach is a set of vocabulary-mapping017
matrices which allow connecting the genera-018
tive model to any victim or component model019
of choice, while retaining differentiability end-020
to-end. The proposed approach has been tested021
in an ample set of experiments including six022
text classification datasets, two victim models,023
and four baselines. The results show that it024
has been able to produce effective adversarial025
attacks, outperforming the compared genera-026
tive approaches and proving highly competi-027
tive against established token-replacement ap-028
proaches.029

1 Introduction030

Text adversarial attacks are subtly manipulated in-031

puts to a machine learning model that have the in-032

tent of causing erroneous predictions. These manip-033

ulations can drastically alter a model’s behaviour034

and represent a significant challenge for the entire035

field of machine learning. In the context of text036

classification, adversaries employ a wide range of037

techniques, from simple token alterations to full038

training of generative models, each aiming to ex-039

ploit the model’s weaknesses while also preserving040

the textual content’s semantic coherence and gram-041

maticality.042

The most prevalent adversarial attack strategy is 043

the token-based approach, where adversarial exam- 044

ples are crafted through a sequence of token modi- 045

fications — replacements, additions, or deletions 046

— guided by search methods like beam search, all 047

while maintaining a series of constraints (Morris 048

et al., 2020). These attacks are simple and effec- 049

tive, but the search method must be run for each 050

example, and the process can prove very time con- 051

suming (Yoo et al., 2020). Conversely, generative 052

approaches train a text-to-text model to directly 053

produce transformations from original to adversar- 054

ial examples. These attacks, though less studied, 055

can explore a more expansive range of transfor- 056

mations than token-based attacks, and at inference 057

time can rapidly generate a diverse and intriguing 058

array of adversarial examples. The approach is flex- 059

ible, with a range of text-to-text models able to be 060

used for this purpose; examples include Generative 061

Adversarial Networks (GANs) (Zhao et al., 2018), 062

paraphrasers (Iyyer et al., 2018), autoencoders (Xu 063

et al., 2021), or style transfer models (Qi et al., 064

2021). The main drawback of the generative ap- 065

proach is that the model must be trained to generate 066

effective attacks, which can be challenging due to 067

the difficulty of manual supervision and the lack of 068

straightforward training approaches (Wong, 2017). 069

Adversarial attacks also differ in the amount of 070

assumed access to the classification model (often 071

called the victim model). One common assump- 072

tion is the black-box scenario, where attacks only 073

require access to the victim model’s outputs, or 074

sometimes the logits (Biggio and Roli, 2018). The 075

opposite is the white-box scenario, where the ad- 076

versary assumes full information access, including 077

gradients, data, loss functions, and model parame- 078

ters — effectively, the worst-case scenario for an 079

attacked system (Biggio and Roli, 2018). These 080

assumptions may seem hard to meet in practice, but 081

increasingly they reflect realistic scenarios due to 082

the widespread adoption of publicly available ma- 083
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chine learning models (such as those found on the084

Hugging Face Model Hub1). On the other hand, de-085

velopers can use white-box attacks to identify and086

fix vulnerabilities in their model. In short, studying087

white-box attacks remains critical.088

An intuitive approach for training a white-box089

generative attack is to link the generative model to090

the victim model, so as to use the feedback from091

the victim model as a training signal. However, this092

signal is not sufficient to ensure all the other prop-093

erties required of a satisfactory adversarial attack,094

such as fluency, grammaticality, closeness to non-095

adversarial examples, and so forth. For this reason,096

in this paper we propose leveraging a suitable suite097

of pretrained language models to encourage such098

properties at training time. During the forward pass,099

our generative model receives an original example100

in input and generates a “soft token” prediction of101

adversarial example in output, which is then passed102

to the victim and downstream models for their pro-103

cessing. Softening the prediction ensures that the104

entire pipeline remains end-to-end differentiable,105

and able to leverage the training objectives of the106

downstream modules as an effective adversarial107

attack loss function.2 The parameters of the gener-108

ative model are then updated in the backward pass,109

while the parameters of the other models are all110

kept frozen. After training, the generative model111

is able to generate not only one, but multiple ad-112

versarial candidates per original example, simply113

by using conventional beam search or any other114

decoding method.115

An immediate challenge to this approach is that116

the use of soft predictions to permit overall differ-117

entiability requires the alignment of the models’118

vocabularies, which is not easy to ensure. The sim-119

plest workaround is to constrain all the models to120

share the same vocabulary and tokenisation algo-121

rithm. However, this severely limits the choice of122

pretrained models. Another possible approach is123

to restrict the vocabularies of all models to their to-124

kens in common (Song et al., 2021). However, this125

may majorly limit the expressiveness and articula-126

tion of the learned adversarial strategies. Overall,127

the vocabulary alignment between language mod-128

els still seems to be a partially unresolved issue in129

the literature.130

1https://huggingface.co/models
2The generative model cannot directly pass text to the other

models while keeping the training signal differentiable, as it
needs either sampling from the token distribution or taking an
argmax — both of which are non-differentiable operators.

For this reason, in this paper, we propose an 131

original approach for training a cross-vocabulary, 132

differentiable white-box generative attack that is 133

able to circumvent this restriction. The core com- 134

ponents of the proposed approach — nicknamed 135

XVD, from ‘cross-vocabulary differentiable’ — in- 136

clude: 1) the use of a suitable set of pretrained 137

language models to provide training signals to the 138

adversarial attack generator; 2) the adoption of soft 139

predictions to ensure end-to-end differentiability, 140

and 3) a set of sparse vocabulary-mapping matri- 141

ces that map tokens between the vocabulary of 142

the generative model and those of the victim and 143

downstream models, allowing complete freedom 144

in the choice of models. The generative model 145

is then trained using a highly configurable, over- 146

all loss function that balances text quality with 147

attack strength. In the experiments, the proposed 148

approach has been compared against four baseline 149

methods on six text classification datasets and two 150

victim models. The results show the effectiveness 151

of the proposed approach at consistently generat- 152

ing high-quality adversarial examples across the 153

range of datasets and victim models. In addition, a 154

comprehensive ablation analysis highlights the con- 155

tributions of the various components and suggests 156

ways for future improvements. 157

In summary, our paper makes the following con- 158

tributions: 159

1. a novel approach for training generative white- 160

box attacks, based on training signals from a 161

set of pretrained language models and a fully 162

differentiable loss function; 163

2. a vocabulary-mapping module which grants 164

interoperability to any chosen combination of 165

generative, victim or loss component models; 166

3. extensive experiments over six text classifica- 167

tion datasets and two victim models that give 168

evidence to the effectiveness of the proposed 169

approach; 170

4. a comprehensive ablation and sensitivity anal- 171

ysis that delves into its benefits and limita- 172

tions. 173

2 Related Work 174

White-box token-based attacks date back to at least 175

the work of Papernot et al. (2016). Typically, these 176

attacks leverage the gradient signal of the victim 177

model in two main ways. The first is to rank token 178

importance in the original sentence, thus identify- 179

ing promising attack targets, as demonstrated in 180
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Wallace et al. (2019). The second is to aid in select-181

ing token transformations that best meet adversar-182

ial criteria, as shown in various character-level and183

word-level attacks (Ebrahimi et al., 2018; Zhang184

et al., 2019; Liang et al., 2018).185

The differentiable model-cascading approach de-186

scribed in Section 1 has been explored by several187

other studies. For instance, Xu et al. (2021) have188

used an autoencoder as the generative model and189

examined several modifications to its training pro-190

cess, such as label smoothing and copy mecha-191

nisms, to enhance the quality of the generated ex-192

amples. Wang et al. (2020) have proposed incorpo-193

rating a downstream model which allows the gener-194

ative model to control the topic of its generated ad-195

versarial candidates at inference time. In contrast,196

Song et al. (2021)’s approach is based on train-197

ing the generator to generate trigger phrases that,198

when concatenated to an input sentence, induce199

misclassification in the victim model. In turn, Guo200

et al. (2021) have proposed learning an example-201

dependent matrix of token probabilities, which at202

inference time is sampled to generate adversarial203

examples. However, none of these approaches has204

proposed a systematic and configurable solution205

for training the generative model to satisfy all the206

desirable properties of an adversarial attack.207

In terms of the vocabulary-alignment issue, the208

works of Xu et al. (2021), Wang et al. (2020) and209

Guo et al. (2021) have all acknowledged the prob-210

lem, but only implemented the shared-vocabulary211

scenario. Conversely, Song et al. (2021) have con-212

strained the generative model to only output the213

common tokens of all vocabularies. As observed214

in the Introduction, neither of these solutions can215

be regarded as satisfactory.216

3 Proposed Approach217

3.1 Overview218

We aim to fine-tune a generative model g, with pa-219

rameters θ and vocabulary Vg, to generate adversar-220

ial examples for victim model v, with vocabulary221

Vv. The approach includes two additional compo-222

nent models for the training objective: a semantic223

similarity model, s, of vocabulary Vs, and a natural224

language inference (NLI) model, n, of vocabulary225

Vn. The parameters of models v, s and n are all226

fixed, while those of g are the target of the proposed227

training approach. The complete setup is shown in228

Figure 1.229
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Figure 1: The training approach. The loss function is
composed of scores from a number of cascaded models
(depicted by squares), a KL divergence score using a
reference model, and a diversity score. The parame-
ters of the generative model are updated using standard
backpropagation.

3.2 Training 230

We initialise the generative model, g, with a pre- 231

trained paraphrase model as it is already capable of 232

a range of diverse, semantic-preserving transforms. 233

Given an original example x, we employ g to gener- 234

ate an example x′ of length T and its corresponding 235

sequence of token probability distributions, which 236

forms a matrix P with dimensions T × |Vg|. 237

We then use the token probability distribution
matrix, a vocabulary-mapping matrix, and the to-
ken embedding matrix of the downstream model
to create a weighted average of token embeddings,
allowing us to retain the desirable differentiabil-
ity. Formally, for any component model Vi, with
i ∈ {v, s, n}, the respective weighted embeddings
Wi are computed as:

Wi = PMiEi

where Ei is the token embedding matrix of model i, 238

and Mi is a vocabulary-mapping matrix (described 239

in Section 3.3) that maps Vg, the vocabulary of P , 240

to Vi, the vocabulary of model i. 241

Additionally, to control the diversity of the gen- 242

erated embeddings, we use the Gumbel-softmax 243

reparametrisation trick (Jang et al., 2017), replac- 244

ing P with a sampled matrix Pb that incorporates 245

Gumbel(τ) noise, where τ is a chosen temperature 246

parameter. Values of τ > 1 make the samples more 247

evenly distributed, while values < 1 concentrate 248

them towards a one-hot distribution. Prior research 249

3



has also used this technique to increase exploration250

during training (Xu et al., 2021; Wang et al., 2020).251

After computation, the weighted embeddings252

Wi, i ∈ {v, s, n} are fed into the component mod-253

els, and their output scores are used in the loss254

function (Section 3.4). The generative model’s pa-255

rameters are updated via standard backpropagation.256

3.3 Vocabulary-mapping matrices257

We construct a vocabulary-mapping matrix, Mi, to258

map tokens from the generative model’s vocabulary,259

Vg, to the vocabulary of each component model,260

noted as Vi hereafter. The matrix has shape |Vg| ×261

|Vi|, and each row is a probability distribution that262

represents the one-to-many token mapping, with263

values summing to 1. This is a large matrix, and264

to save space we have implemented it as a sparse265

matrix.266

Mapping tokens between vocabularies, each pos-267

sibly built with a different tokenisation algorithm,268

is not straightforward. In our implementation, the269

generative model’s tokeniser uses SentencePiece270

(Kudo and Richardson, 2018), while the tokenisers271

of all the component models use WordPiece (Wu272

et al., 2016). We match tokens where possible us-273

ing string matching rules, and use the component274

model tokeniser to create mappings for the remain-275

der. The process is described fully in Appendix276

B.277

3.4 Loss function278

In accordance with the definition provided by279

Michel et al. (2019), our aim is to create adversar-280

ial examples that successfully tweak the predicted281

labels, yet ensure retention of the original text’s282

meaning alongside linguistic acceptability. To this283

end, our training objective, l(x, x′):284

l(x, x′) = αvt(v(x, x
′), βv)+

αst(s(x, x
′), βs)+

αet(e(x, x
′), βe)−

αKLt
∗(DKL(x, x

′), βKL)

(1)285

integrates multiple components as follows:286

• v(x, x′) represents the ‘victim model score’,287

a measure of how much the classifier’s confi-288

dence in the correct class drops when replac-289

ing x to x′ in input.290

• s(x, x′) is the ‘similarity score’ between x291

and x′, which is based on the cosine similarity292

of their sentence embeddings as computed by 293

a pretrained Sentence-BERT model (Reimers 294

and Gurevych, 2019) 295

• e(x, x′) is the ‘entailment score’, which mea- 296

sures the probability that x’s ground-truth la- 297

bel is retained by x′, and is approximated with 298

the probability of x entailing x′ using a pre- 299

trained NLI model. 300

• DKL is the Kullback-Leibler (KL) divergence 301

between the token probabilities output by the 302

fine-tuned generative model, noted as g, and 303

those of a reference model, noted as g∗, and 304

taken as the initial pretrained model. DKL is 305

defined as: 306

DKL =
1

T
Ex∼D,x′∼g(x;θ)[log pg(x

′|x)−

log pg∗(x
′|x)]

(2) 307

where the generated sequence length, T , is 308

used to normalise the divergence to prevent 309

longer sequences being unfairly penalised. 310

This term encourages the fine-tuned distribu- 311

tion to not deviate excessively from the initial, 312

preserving the generative properties of g∗. 313

• t and t∗ are threshold clipping operators, with 314

t(a, β) = a if a < β, and 0 otherwise, and 315

t∗(a, β) = a if a > β, and 0 otherwise. As 316

such, α and β are hyperparameters that con- 317

trol each term’s contribution. 318

The training objective l(x, x′) is incorporated 319

into the final batch-level loss, L, defined as: 320

L = −

 1

|B|
∑

(x,x′)∈B

l(x, x′)

+ αd d(B) (3) 321

where d(B) is a batch-level diversity score, and αd 322

its corresponding coefficient. To compute d(B), 323

we first compute the mean of the token embeddings 324

for each generated sentence within batch B. We 325

then calculate the cosine similarity between each 326

pair of mean embeddings using the same model 327

as the similarity score, and compute d(B) as the 328

average, with lower values indicating more diver- 329

sity. We found that the inclusion of this term can 330

effectively prevent mode collapse and encourage 331

variety in the generated examples. 332
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Each term in the loss function is differentiable,333

allowing for efficient minimisation via backpropa-334

gation. The coefficients can be adjusted to priori-335

tise different objectives, such as attack strength or336

fluency.337

3.5 Validation and early stopping338

During fine-tuning, it is important to enforce early339

stopping to prevent text quality degradation due340

to over-training. To this end, during validation341

we generate eight candidates per original, using342

diverse beam search (Vijayakumar et al., 2016).343

For each candidate, we check if its scores from344

Equation 1 surpass the corresponding β thresholds345

(or, in the case of the KL divergence, fall below).346

The validation metric we adopt is the proportion of347

attacks that have at least one candidate that success-348

fully passes all checks. We calculate the validation349

metric multiple times per epoch, and halt the train-350

ing process once it fails to improve over a patience351

interval, as standard for early stopping.352

4 Experimental setup353

4.1 Datasets354

We have conducted experiments over six diverse355

English text classification datasets (Table 1). The356

Hate Speech dataset (HS) classifies offensive lan-357

guage in tweets as hate speech, offensive language,358

or neither (Davidson et al., 2017); the Text RE-359

trieval Conference (TREC) question-type classifi-360

cation dataset (Li and Roth, 2002) and the SUBJ361

dataset (Pang and Lee, 2004) discriminate between362

objective and subjective sentences; the Rotten363

Tomatoes (RT) (Pang and Lee, 2005) and Finan-364

cial PhraseBank (FP) (Malo et al., 2014) datasets365

are sentiment analysis datasets of movie reviews366

and financial news, respectively; and the Emotion367

dataset classifies text fragments as one of six ba-368

sic emotions (Saravia et al., 2018). These datasets369

have been chosen for their variety and attackable370

short snippets, with concise statistics and examples371

presented in Table 1. Further details are provided372

in Appendix A.373

4.2 Models374

We have used T5-Base (Raffel et al., 2020), which375

uses SentencePiece for tokenisation, as our gener-376

ative model, g. We have evaluated attacks on two377

victim models: a DistilBERT model (Sanh et al.,378

2019) and an ELECTRA-trained model (Clark379

et al., 2020), both of which use WordPiece for380

tokenisation. Each victim model has been fine- 381

tuned on the given dataset prior to being subjected 382

to attacks. Full details of all models (including 383

the semantic similarity and entailment models) are 384

provided in Appendix A. 385

4.3 Baselines 386

To comparatively evaluate the performance of our 387

model we have used four established baseline at- 388

tacks, all included in the comprehensive OpenAt- 389

tack adversarial attack library of Zeng et al. (2021). 390

TextFooler (Jin et al., 2019) and BERTAttack (Li 391

et al., 2020) form the first set of baselines; both are 392

token-replacement attacks that replace individual 393

tokens sequentially in a constrained optimisation 394

process. We have also included two generative at- 395

tacks that, like our approach, generate adversarial 396

candidates at inference time. The first is a GAN 397

approach (Zhao et al., 2018), and the second is 398

an adversarial paraphraser, named SCPN (Iyyer 399

et al., 2018), that generates syntactically controlled 400

paraphrases. 401

4.4 Candidate selection 402

At inference time, our fine-tuned model is capable 403

of generating, in principle, an unlimited number 404

of candidates per input example. Nevertheless, for 405

the purpose of fair comparison with the baselines 406

outlined in 4.3 that return a single adversarial ex- 407

ample per input, we have opted to select only one 408

candidate also from our model. 409

We begin with the use of diverse beam search 410

(Vijayakumar et al., 2018) to create n candidates 411

for each original example. (A sensitivity analy- 412

sis of n is presented in Section 6.1.) We then 413

compute a ‘quality score’ for each candidate as 414

s(x, x′) + e(x, x′) − DKL(x, x
′), which repre- 415

sents a rough balance of our text-quality objectives. 416

From these scored candidates, we select those that 417

have managed to flip the ground-truth label. Within 418

this subset, we select the candidate with the high- 419

est score amongst those that satisfy all validation 420

checks (Section 3.5). If none meets these require- 421

ments, the highest-scoring candidate is chosen in- 422

stead. 423

4.5 Evaluation metrics 424

As an obvious preamble, no ground-truth reference 425

exists for adversarial candidates, and therefore the 426

evaluation has to be orchestrated with adequate un- 427

supervised metrics. To this aim, we have used five 428

evaluation metrics over the test set of each dataset, 429
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Dataset N (trn/val/tst) Classification task #cls Examples
HS 8k/1k/1k hate speech detection 3 "I can be very vengeful. Don’t be a [..]" (offensive language)
TREC 4k/1k/0.5k type of question 6 "When did beethoven die?"(num)
SUBJ 2k/0.5k/0.5k (subject/object)ivity 2 "...routine, harmless diversion and little else." (subj)
RT 3.5k/0.5k/0.5k sentiment (movies) 2 "A moving and not infrequently breathtaking film." (pos)
FP 1.5k/0.2k/0.2k sentiment (financial) 3 "Operating profit was EUR 11.4 mn, up from [...]" (pos)
Emotion 10k/1k/1k emotion detection 6 "i be made to feel rotten"(sad)

Table 1: Statistics and examples from the datasets used. Column N shows the approximate number of examples in
each train/validation/test split, and #cls is the number of classes of the dataset.

and reported the median values in Table 2. The430

first metric, referred to as Flip, is the proportion431

of instances where the ground-truth label of the432

original example, predicted correctly by the victim433

model, has flipped in the prediction for the can-434

didate. The next three—Sim, Flu, and Ent— are435

text quality metrics, and are only computed for ex-436

amples that have flipped. To assess the semantic437

similarity between the original and the candidate438

(Sim), we have used BERTScore F1 (Zhang et al.,439

2020); to assess the fluency of the candidate (Flu),440

we have used BARTScore (Yuan et al., 2021), a441

fluency proxy that uses the text generation proba-442

bility of a seq2seq model; and for the entailment443

(Ent), we have used the probability that the can-444

didate does not contradict the original in the en-445

tailment model. The last metric — the Validated446

Success Rate (VSR) — is the proportion of exam-447

ples that have successfully flipped the label and448

also met minimum thresholds across the three text449

quality metrics.3 While all automated metrics have450

inherent limitations, our choice of metrics is both451

consistent with prior literature and able to provide452

a thorough assessment of the quality of the adver-453

sarial candidate.454

Postprocessing. Before metric calculation, each455

successful attack has been post-processed to begin456

with a capital letter, end with a period, and have no457

whitespace around the last punctuation character.458

5 Results459

The results from our experiments are reported in460

Table 2, showing that the proposed approach, XVD,461

has been able to generate high-quality adversarial462

examples with notable success rates (VSR). Com-463

pared to the generative baseline methods, GAN464

and SCPN, XVD’s performance has proved better465

for all experimental combinations bar one. XVD466

has also performed competitively against the best467

token-replacement baseline, BERTAttack, scoring468

3We have used the (fairly relaxed) thresholds of: ≥ 0.85
Sim, ≥ −4 Flu, ≥ 0.6 Ent.

best for three out of six datasets with the Distil- 469

BERT victim model, and for four out of six with the 470

ELECTRA victim model. XVD has also achieved 471

the highest VSR overall (0.87; Emotion dataset). 472

In particular, it has performed the best with both 473

victim models over the TREC dataset, where its 474

flipping rate has proved much higher than that of 475

the other approaches, and over the HS dataset, prob- 476

ably because the token-replacement baselines have 477

struggled to replace its many slang words in the ab- 478

sence of well-defined synonyms. Qualitative exam- 479

ples of the attacks generated by XVD are presented 480

in Table 3. 481

Overall, the proposed approach has proved very 482

strong at label-flipping (Flip) and at retaining the 483

original label (Ent), while intermediate in the flu- 484

ency (Flu) and similarity (Sim) metrics. This is 485

mainly due to its much broader generative space 486

compared, in particular, to the token-replacement 487

attacks. The proposed approach is also, by design, 488

able to pursue different trade-offs between these 489

properties, thanks to its highly configurable train- 490

ing objective and generative behaviour. We explore 491

some of these trade-offs in the following section. 492

6 Ablations 493

We have measured the performance impact of vari- 494

ous parameters within our model through a series 495

of ablation studies, using the Financial PhraseBank 496

dataset as reference and testing each configuration 497

using three random seeds. The results are presented 498

in the following subsections. 499

6.1 Number of generated evaluation 500

sequences 501

The number of sequences generated during infer- 502

ence, n, directly controls the attack’s search space. 503

As n increases, we expect a rise in the label-flipping 504

rate and, after a point, a decline in text quality met- 505

rics. To measure these effects, we have varied n, 506

employing diverse beam search for n ≥ 2 (with 507

n/2 beam groups) and regular beam search for 508
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Victim Model Attack
Datasets

HS TREC SUBJ

VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent

ELECTRA

BertAttack 0.37 0.50 0.96 -1.84 0.95 0.33 0.62 0.95 -2.35 0.67 0.46 0.71 0.95 -1.96 0.90
TextFooler 0.29 0.53 0.92 -2.94 0.80 0.18 0.44 0.93 -2.74 0.49 0.24 0.55 0.94 -2.91 0.69
GAN 0.00 0.78 0.79 -6.38 0.33 0.00 0.70 0.84 -6.38 0.09 0.00 0.35 0.81 -6.08 0.24
SCPN 0.12 0.71 0.84 -4.49 0.49 0.25 0.87 0.90 -3.87 0.48 0.28 0.63 0.89 -3.28 0.68

XVD (mean) 0.46 0.80 0.89 -3.30 0.88 0.58 0.99 0.92 -3.22 0.80 0.63 0.92 0.89 -3.25 0.90
XVD (std) 0.02 0.04 0.00 0.28 0.02 0.02 0.04 0.00 0.28 0.02 0.03 0.02 0.00 0.12 0.01

DistilBERT

BertAttack 0.38 0.53 0.96 -1.87 0.94 0.32 0.64 0.94 -2.56 0.69 0.40 0.65 0.95 -1.89 0.83
TextFooler 0.30 0.54 0.93 -2.91 0.79 0.19 0.44 0.93 -2.76 0.52 0.24 0.51 0.94 -2.58 0.64
GAN 0.00 0.81 0.79 -6.41 0.33 0.00 0.73 0.84 -6.38 0.10 0.00 0.43 0.81 -6.11 0.20
SCPN 0.13 0.72 0.84 -4.46 0.51 0.27 0.92 0.90 -3.84 0.55 0.23 0.50 0.89 -3.32 0.70

XVD (mean) 0.59 0.82 0.89 -3.14 0.89 0.37 1.00 0.89 -3.70 0.65 0.14 0.98 0.82 -4.04 0.79
XVD (std) 0.08 0.01 0.01 0.16 0.03 0.08 0.00 0.01 0.16 0.02 0.12 0.01 0.01 0.26 0.06

Victim Model Attack
Datasets

RT FP Emotion

VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent VSR Flip Sim Flu Ent

ELECTRA

BertAttack 0.47 0.85 0.96 -1.42 0.79 0.32 0.68 0.96 -1.81 0.56 0.66 0.90 0.98 -0.99 0.97
TextFooler 0.34 0.69 0.96 -2.12 0.69 0.33 0.63 0.94 -2.61 0.71 0.53 0.76 0.97 -1.27 0.95
GAN 0.00 0.39 0.82 -6.00 0.33 0.00 0.39 0.79 -6.24 0.16 0.00 0.68 0.82 -6.43 0.11
SCPN 0.28 0.66 0.89 -3.44 0.70 0.14 0.40 0.89 -3.52 0.58 0.37 0.72 0.90 -3.26 0.83

XVD (mean) 0.30 0.81 0.85 -3.32 0.84 0.72 1.00 0.89 -3.12 0.94 0.64 0.97 0.90 -3.24 0.88
XVD (std) 0.05 0.05 0.01 0.15 0.02 0.15 0.00 0.01 0.37 0.03 0.14 0.02 0.02 0.44 0.05

DistilBERT

BertAttack 0.46 0.89 0.96 -1.40 0.71 0.43 0.79 0.96 -1.77 0.82 0.67 0.88 0.98 -0.97 0.98
TextFooler 0.36 0.70 0.96 -2.10 0.75 0.41 0.76 0.94 -2.60 0.77 0.54 0.76 0.98 -1.28 0.95
GAN 0.00 0.41 0.82 -5.95 0.32 0.00 0.41 0.80 -6.24 0.18 0.00 0.84 0.82 -6.42 0.11
SCPN 0.27 0.69 0.89 -3.48 0.63 0.19 0.49 0.90 -3.30 0.63 0.41 0.80 0.90 -3.23 0.80

XVD (mean) 0.28 0.89 0.85 -3.52 0.77 0.25 0.97 0.86 -3.95 0.72 0.87 0.97 0.92 -2.64 0.95
XVD (std) 0.10 0.02 0.02 0.23 0.03 0.15 0.04 0.01 0.21 0.21 0.00 0.00 0.00 0.02 0.01

Table 2: Evaluation of baselines and our approach, XVD, across six datasets and two victim models. For XVD,
we report the mean and std of each metric across three random seeds (the other approaches are deterministic). We
use the following abbreviations: VSR is Validated Success Rate, Flip is the proportion of label flips, Sim is the
similarity as measured by BERTScore F1, Flu is fluency as measured by BARTScore, and Ent is the entailment
probability measured by an NLI model. Higher is better for all metrics. For dataset abbreviations, see Section 4.1.

n = 1. Our findings, depicted as a plot in Figure509

2, have confirmed the expected increase in label-510

flipping rate with larger n. The fluency and sim-511

ilarity metrics have peaked around n = 4 before512

declining, while entailment has remained relatively513

constant from n = 8 onwards. The validated suc-514

cess rate, which compounds the label-flipping rate515

and the text quality metrics, has improved as n516

increased, up to a plateau at n = 32.517

6.2 KL divergence and diversity coefficients518

The KL divergence and diversity coefficients (re-519

spectively, αKL in Equation 1 and αd in Equation520

3) define the intensity of their respective regularis-521

ers and substantially impact the quality and diver-522

sity of the generated text, as shown in Figure 3.523

Increasing the KL coefficient ties the trained model524

more strongly to the reference model, which in our 525

implementation increases the attack quality at the 526

expense of the label- flipping rate. On the other 527

hand, lower values of the diversity coefficient push 528

the model towards samples that are less diverse, 529

while higher values promote diversity per se. Em- 530

pirically, we have found that that the label-flipping 531

rate has tended to remain constant for a range of 532

diversity values, but the overall text quality metrics 533

have peaked for a value of 10. 534

6.3 Impact of the vocabulary mapping 535

To probe the impact on performance of the vocabu- 536

lary mapping, we have also carried out an experi- 537

ment attacking a T5 victim model, which has the 538

same vocabulary as the generative model and dis- 539

penses with the need for a vocabulary-mapping ma- 540
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Dataset Label

HS Orig Get two birds stoned at one time. Neither

Adv At the same time get two birds stoned. Offensive

TREC Orig What is the atomic weight of silver? Numeric

Adv Tell me the atomic weight of silver? Description

SUBJ Orig “ funny valentine “ is about learning what it takes to find true love . Objective

Adv funny valentine’s about finding true love. Subjective

RT Orig suffers from unlikable characters and a self-conscious sense of its own quirky hipness . Negative

Adv it is characterized by characters who are unlikable and it has a sense of hipness that is self-conscious. ” Positive

FP Orig In addition , the company will reduce a maximum of ten jobs. Negative

Adv It has announced it has a maximum of ten job-separation measures. It has announced it has Neutral

Emotion Orig i find myself feeling anxious and unsure Fear

Adv anxiety and a lack of confidence Joy

Table 3: Successful adversarial attack examples generated by the proposed approach.

Figure 2: Performance as a function of the number of
sequences generated per sample (on the FP dataset). The
fluency and similarity metrics have been normalised to
the [0,1] interval. Higher is better for all metrics.

trix. The attacks on the T5 model (on the FP dataset,541

averaged across three seeds) have resulted in a542

higher VSR value (0.44) compared to ELECTRA543

(0.39) and DistilBERT (0.28), implying that the544

vocabulary-mapping matrix may introduce some545

performance penalisation. However, this difference546

could also be due to other reasons, such as the547

homogeneity between the attacker and the victim548

model. Since it is not obvious how to precisely549

excise the impact of the vocabulary mapping from550

that of the other components, we leave a more ex-551

act quantification and possible mitigations to future552

work .553

7 Conclusion554

This paper has presented an approach for creating555

white-box adversarial attacks against any text clas-556

sifier, regardless of the vocabulary of the generator,557

victim or component models. The approach lever-558
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Figure 3: Performance as a function of the KL diver-
gence and diversity coefficients.

ages vocabulary-mapping matrices ro remap the vo- 559

cabularies across components, allowing for a fully- 560

differentiable training objective without sacrificing 561

the expressiveness of the generator. Experimental 562

results across six datasets and two victim models 563

have confirmed the viability and effectiveness of 564

the proposed approach, and an ablation analysis 565

has shown the impact of the key parameters on 566

the label-flipping/text quality trade-off. Future re- 567

search might aim to integrate other components, in- 568

cluding possibly human preferences, in the training 569

objective, enhance the performance contribution 570

of the vocabulary-mapping matrices, and adapt the 571

approach to tackle other NLP tasks. 572
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8 Ethical considerations573

The proposed approach potentially raises two main574

ethical considerations. The first, is the potential to575

generate offensive or inappropriate content. How-576

ever, this risk, largely influenced by the training577

data and the pretraining of the generative model578

used, is a common challenge across text generation579

models and not specifically our work. The second580

is that the proposed approach might be used by a581

malicious actor to deceive or manipulate real-world582

systems. This risk follows from the dual-use nature583

of adversarial research, where developing meth-584

ods to defend systems against attacks first requires585

exploring the attacks themselves.586
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A Training details808

The hyperparameters used for our experiments are809

listed in Table 4. As optimiser, we have used810

Adafactor4 with learning rate set to 0.0004. To811

select the values for the α parameters, we have812

performed a grid search using the validation set of813

the FP dataset, selecting the combination that max-814

imised the validation criteria. The β coefficients815

have been set in a similar way, but with a much816

smaller search. For the τ parameter of the Gumbel-817

softmax sampling, we have investigated a range of818

values (0.25, 0.5, 0.75, 1, 1.25, 1.5), but found no819

clear performance differences between them, so we820

have simply set τ = 1.25 for all experiments as it821

seemed a sensible default. A sensitivity analysis822

to some of these parameters has been presented823

in the ablations (Section 6). The model has been824

trained on a single NVIDIA A40 GPU with 48 GB825

RAM. We have used the attack success rate over826

the validation set as the validation criterion, and827

either early stopped based on a patience parameter,828

or stopped after a maximum of 12h of training time.829

We have collated the training batches by bucketing830

examples with similar length, and then randomis-831

ing the batches. The details of the various models832

used — generative and reference model, victim833

models, and loss component models — are given834

in Table 5.835

Basic statistics from each dataset used are pre-836

sented in Table 1. For each dataset we have used837

pre-defined train/val/test splits if available, and oth-838

erwise constructed them by randomly selecting839

10% of the data as the validation set and 10% as the840

test set (done for TREC, FP, SUBJ, and HS). For841

the FP dataset, we have used the dataset version842

with at least 50% annotator label agreement. For843

all datasets, we have excluded the training exam-844

ples that the victim model classified incorrectly, as845

they could be said to be already “adversarial”. We846

have also only included examples with 32 tokens or847

fewer, since the pretrained paraphrase model was848

trained for sequences in that range.849

B Token mapping rules850

In our implementation, the vocabulary of the851

generative paraphrase model (of size 32,100) is852

constructed using the SentencePiece (Kudo and853

Richardson, 2018) tokenisation algorithm, while854

the component models’ vocabulary (of size 30,522)855

4We set the following arguments: scale_parameter=False,
relative_step=False, warmup_init=False)

Hyperparameter Value

General

Optimisation algorithm Adafactor
Learning rate 4× 10−5

Weight decay 0
Batch size (train) 12
Max original length 32
Min generated length max(0, l − 2− floor(l/4))
Max generated length l + 2
Validation frequency Every 24 batches
Patience 35
Precision fp32

Coefficients (Equation 3)

Victim (αv) 20
Similarity (αs) 3.5
Entailment (αe) 0.5
KL (αKL) 0.1
Diversity (αd) 10
Victim threshold (βe) 1− 1/c
Similarity threshold (βv) 0.3
Entailment threshold (βe) 0.4
KL threshold (βv) 4.5
Gumbel-softmax temperature τ 1.25
# Gumbel samples 5

Test-set generation

Batch size (eval) 8
# generated sequences (n) 32
# beams 32
# beam groups 16
Diversity penalty 1
Top-p 0.98
Temperature 1

Table 4: Hyperparameters. l is the batch length of
generated text during evaluation (after padding) and
c is the number of classes in the dataset

use the WordPiece (Wu et al., 2016) tokenisation 856

algorithm. These algorithms have considerable dif- 857

ferences, and mapping the tokens is not straightfor- 858

ward, but we have been able to construct a workable 859

mapping with the following rules. 860

1. Map special tokens (e.g., PAD, EOS, UNK) 861

directly across both vocabularies. Map the 862

extra id tokens in the T5 vocabulary to the 863

UNK WordPiece token. Matches: 104 864

2. Map one-to-one direct matches between Sen- 865

tencePiece start-of-word tokens and Word- 866

Piece non-continuation tokens. Matches: 867

around 9000. 868

3. Map one-to-one direct matches between Sen- 869

tencePiece non start-of-word tokens and 870

WordPiece continuation tokens. Matches: 871

around 2000. 872

4. Map remaining SentencePiece tokens one-to- 873
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Purpose Size (MB) Identifier

Training

Generative model 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)
Reference model 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)
Victim model (ELECTRA) 54 google/electra-small-discriminator
Victim model (DistilBERT) 268 distilbert-base-uncased
Similarity 134 sentence-transformers/paraphrase-MiniLM-L12-v2
Entailment 54 howey/electra-small-mnlis

Evaluation

Similarity (BERTScore) 1630 roberta-large
Fluency (BARTScore) 1630 facebook/bart-large-cnn
Entailment 54 howey/electra-small-mnli

Table 5: The models used in this paper. Our GPU memory requirements dictated we use only small, distilled models,
but it is highly likely larger models would give better performance. All models are from the Hugging Face Model
Hub.

many with WordPiece tokens using the Word-874

Piece tokeniser, stripping any generated spe-875

cial tokens, and assigning equal probabili-876

ties to all matches. The few tokens with-877

out matches (in practice, special cases like878

\xad) are mapped to the UNK token. Matches:879

around 22k.880

C Limitations881

A limitation of the proposed approach is its sub-882

stantial requirement for computing and hardware883

resources, as gradients need to be computed across884

multiple models. A GPU with at least 24 GB of885

memory is likely the minimum computing require-886

ment, and for the utilization of larger models, cor-887

respondingly more memory is necessary. This limi-888

tation will lessen in the future as GPUs with larger889

memory will become routinely available, and as890

advancements in model distillation techniques con-891

tinue. Another limitation is that the approach has892

been solely tested with a paraphrase model as the893

generator, and over datasets comprised of relatively894

short sentences. The generalizability of the method895

to other models and text styles remains then an896

open question. However, the possibility of subdi-897

viding larger blocks of text suggests that this may898

not be a significant limitation in practice.899
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